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Removal of Undesired Wavefields Related to
the Casing of a Microwave Scanner

Peter M. van den Berg and Jacob T. Fokkema

Abstract—This paper deals with the scattered field data mea-
sured by a closed microwave scanner and discusses the removal
of the effects of the metal casing as a preprocessing step before ac-
tual inversion of thedata can takeplace. It isshown that Rayleigh’'s
reciprocity theorem furnishesarelation between the scattered field
data obtained in the closed microwave scanner and the scattered
field data as if they were obtained by an open scanner without
the metal casing. This relation leads to a system of linear equa-
tions, from which the desired scattered field data with respect to
the equivalent open scanner are obtained.

Index Terms—Inverse scattering, microwave scanner,

reciprocity.

I. INTRODUCTION

OR hiomedical applications, a number of quantitative mi-

crowave imaging algorithms have been discussed, where
the object under consideration is assumed to be embedded in an
infinite homogeneous medium. Inverse methods, to image the
objects quantitatively, are very expensive in terms of the cost of
the numerical operations. Recently, for a homogeneous back-
ground, some effective inversion procedures [1] have been de-
veloped, where, due to the convolutional structure of the Green
functions, the underlying algorithm is very efficient as far as
computational operations are concerned. For the case of an ob-
ject located in a homogeneous environment of infinite extent,
the scattered field response is conveniently expressed in con-
trast-source type of integral operators. In view of the convolu-
tion structure of these operators, they are efficiently computed
with fast Fourier transform (FFT) routines. This feature facili-
tates the inversion of complex problems.

Inmost practical situations, theembedding cannot beassumed
tobehomogeneouswithinfiniteextent. Forexampl e, attheCentre
National de la Recherche Scientifique (CNRS)/Supélec, Paris,
France[2],[3],acylindrical 434-MHz closed microwavescanner
hasbeen devel oped. Thissystemconsistsof awater-filledcircular
cavity with metal casing in which a number of transmitting/re-
ceiver dipolesareregularly spaced on acircle of dightly smaller
diameter. At the cross section of interest, it isassumed that both
the body and sources are cylindrical along the scanner axis so
that one suffices with atwo-dimensiona (2-D) TM scalar field
problem, wherethefundamental field quantity istheel ectric-field
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component parallel to the scanner axis. In modeling thefield in-
sidethis scanner, Geffrin[2] hastaken into account the effects of
themetallic casing by computing the Green function of ametallic
circular cavity. Asfar asthe computational burdenin comparison
to the problem with afree-space Green function (of the homoge-
neousembedding of infiniteextent) isconcerned, theconvol ution
structure has been lost and the necessary computation time and
computer storagefor themodeling of thefieldsmay increasedra-
matically. To avoid this problem, Tijhuis and Franchois[4] have
modified their inversion algorithm such that, in each iteration, a
forward solver with afree-space Greenfunction canbeused. This
isachieved by applying in each iteration aproper embedding ap-
proach, wheretheinfluence of themetal casingistakinginto ac-
count by changing the sources of the transmitting field.

In order to be able to use inversion agorithms, developed for
objects in homogeneous embedding, without any change, we
present a preprocessing procedure in which the scattered field
dataof the closed scanner are replaced by the scattered field data
from an open scanner. The sourcesthat generate the wavefields
are unchanged. The removal of undesired wavefields related to
themetal casing hasto beeffected without changing any relevant
scattered field information of the object to be probed. In relation
to a similar marine seismic problem, Fokkema and Van den
Berg [5] and van Borselen et al. [6] have shown that Rayleigh’'s
reciprocity theorem furnishesthetool for thisremoval. In sucha
theorem, theinteraction of two nonidentical statesis considered.
One state isidentified with the actual situation, while the other
isthe desired one; in our case, the same scanner, but without the
metal casing. This procedure does not require any information
about the object to be probed, neither structural nor material.
The removal procedure finally boils down to an inversion of
a matrix. It is anticipated that the computational cost of this
matrix is relatively quite cheap with respect to the total cost of
theinversion algorithm to image the object quantitatively.

II. 2-D TM FIELD PROBLEM

We use z asthe position vector in R2. We consider harmonic
waves with radial frequency « and use the complex field repre-
sentation with the time factor exp(—st), where s — iw isthe
complex Laplace parameter, with Re(s) > 0, andz istheimagi-
nary unit. Let D, denotethe domain of the scattering object(s).
The objects are nonmagnetic and the sources are of an electric
type. Assume that D, is irradiated by an incident field ¢,
then thetotal field «w = u(«) at position x satisfies the modified
Helmholtz equation

(V-Vu—~"u=—q 1)
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metal casing at r = a

Fig. 1. Closed microwave scanner configuration with transmitter at = ¢
(denoted by the symbol x) and receiver at x z (denoted by the symbol V).

where g denotesthe source distribution. Further, the propagation
coefficient v = ~(z) is given by

v =s/c, @

where ¢ = ¢(x) denotes the complex wave speed. In case of the
presence of ametal casing in the microwave scanner, the field
satisfies the boundary condition that « = 0 at the metal casing.
For an open scanner, the field should be regular at infinity, sat-
isfying the radiation conditions.

In view of the circular structure of the acquisition and the
configuration of the microwave scanners, we introduce a polar
coordinate system xz = (r, ¢). In this polar coordinate system,
the source position is given by s = (rs, ¢s), while the re-
ceiver positionisgivenby xgr = (rr, ¢r) (See Figs. 1 and 2).
In each circular section, where the medium is homogeneous and
no sourcesarepresent, for al ¢ € [0, 2x], twoindependent types
of wavefield constituents exist, viz.

Um = Irn(’YT) exp(iim¢)7 —oo <m < 0 (3)

which isregular a » = 0, and

U = K (y7r) exp(Eime), —co<m<oo (4
which isregular at » — oo. Both type of field constituents are
solutions of the homogeneous wave equation (1). The functions
I, and K,,, are modified Bessel functions of order m and of
the first and second kinds, respectively. The field constituents
are used extensively in the relation between the fiel ds occurring
in the closed and open microwave scanners. Before discussing
the fields in these two cases in more detail, we first formulate
Rayleigh’s reciprocity relation.

l homogeneous embedding
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Fig.2. Openmicrowave scanner configuration with transmitter at = . (denoted
by the symbol x) and receiver at x s denoted by the symbol V).

IIl. RECIPROCITY RELATION BETWEEN TWO
DIFFERENT STATES

In a reciprocity theorem, we consider a time-invariant
bounded domain D in space in which two field states occur.
The two states will be distinguished by the superscripts A and
B, respectively. The boundary surface of D is denoted by 8D;
the normal vector  on 9D is directed away from D. State
A is characterized by the source distribution ¢* generating
a wave field »*. Similarly, state B is characterized by the
source distribution ¢? and wave field «2. In both cases, the
interior medium properties are the same. In the domain D
under consideration, the wave equations for states A and B are

(V . V)U/A _ ’YQUIA — _ qA (5)
(V'V)U/B_’YQU/B: _qF)' (6)
respectively. In the reciprocity relation, the interaction quantity
between the two statesis
V- (w?VuP —uPvu?t) = (V- V)P — B (V- V)ut
(7

Using wave equations (5) and (6), we arrive at the local reci-
procity relation

V- (utVuP — 0P vut) = ¢t — ¢But. (8)

Using Gauss' theorem, we obtain the global form

/ (uAa,,uB—uBa,,uA)ds = / (unB—unA)dA 9

oD D

where 3, denotes the spatial derivative in the direction of the
normal » to &D. We note that (9) is Rayleigh’ s reciprocity the-
orem for the domain D when the internal medium properties
of the two states are the same (Rayleigh [7]; he denoted it as
Helmholtz' theorem).
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We subsequently define the two field statesin more detail. In
particular, state A characterizes the field state inside a closed
microwave scanner and state B characterizes the field state in
an open scanner.

A. Sate A: The Wave Field Inside a Closed Scanner

Define state A as the field in the closed scanner, where this
field is generated by a source at + = xz¢ and source strength
27Q,i.e,S

gt =27Q 8(x — x5).

Theincident field in the scanner isdefined asthefieldin absence
of the object D,.;. Thisincident field consists of adirect field
from the source and areflected contribution due to the presence
of themetal casingat = a (seeFig. 1). Sincethisincident field
isregular at » = 0, we write thisfield in the form

Wz, 15) = QKo (v]r — z5))

+Q Z eXp [Lm(QO - ‘PS)]R;I;CIm(’W’)

m=—0o<

(10)

(11)

wherethefirst termisthedirect field fromthe sourceat z = x5
and the second term (with reflection factor Rinc) is the contri-
bution due to the presence of the metal casing at » = a. Note
that, in view of the addition theorem of Bessel functions, we
may write

oo

Ko(vlz—zsl) = > exp [im(p—0s)] In(yr<) Km(y75)

wherer< = min{r,7s} and 7~ = max{r,rs}. Inview of the
boundary condition that wn = 0 at the casing (for » = a),
the reflection factor R is obtained as

L (yrs) Km(va)
Im(’Va)
From the experiments of the fluid-filled scanner without the

presence of object D, the source strength is obtained from
the average value of all measurements ©*"¢(x g, v5) as

Ryt =— (13)

27 2w

—//UA’inC(aiR,ﬂCs)dwRdws

472
00

= Q[lo(vr<)Ko(yrs) + REIo(vrr)]

where r. = min{rg,rs} and r~ = max{rg,rs}. From this
relation, the quantity @ can be determined robustly. With this
valuefor @, theincident field in the fluid-filled scanner with no
object is completely described.

The scattered field of state A is defined asthefield caused by
the presence of the object D, hence,

(14)

uA,sct — uA,inc'

U

(15)

Let » = ry describe acircle that completely encloses the object
D.;. We assume that r( is aways less than both g and rs. In
the homogeneous domain ¢y < » < a outside the object D,

this scattered field can then be decomposed in the wave con-
stituents of both the type of (4) and (3). We write this scattered
field as

ut e, xs) = Y explimp) un*(ps)
Ko (yr) + RfﬁtIm(’W’)
Krn (’77)R) + R:ﬁtInl(’yTR) '

The factor R:S* represent the reflection factor due to the metal
casing. In view of the boundary condition that 4 = 0 and
wbin® = 0 at the metal casing for » = a, the scattered field
wbs¢t = ( vanishes there as well, hence, the reflection factor
Rt is obtained as

(16)

Kim(ya)
I (va)
Note further that the denominator at the right-hand side of (16)

is added for convenience to arrive at the situation that, at the
receiver level r = rg, we have

sct __
an -

17

oo

eroes) = Y exp(impr) upy™(ps)-

m=—0o<

uA,sct(

(18)

Hence, the coefficients w:25°* (¢ ) are the Fourier coefficients
of the scattered field data as far as the transform with respect to
the receiver coordinates is concerned. Using the inverse Fourier
transform, we observethat the quantity ;5 (¢ ) followsfrom
the measured data ' (z g, z5) as

27

) 1 . )
U,;}l’SCt((pS) =5 /exp(—fmupR) uA’SCt(xR,xS) dyg.
0

(19)

B. Sate B: The Wave Field Inside an Open Scanner

Define state B as the desired field in the equivalent open
scanner, where thisfield is generated by a source at the receiver
location z = z® [see Fig. (2)] and source strength 27.Q), i.e.,

q® =27Q6(x — zR).

In state B, the source and receiver locations are interchanged.
This means that the sources are at » = rg and the receivers are
at rs. Now, the incident field consists of adirect field from the
source only so that thisfield is simply written as

(20)

uB(z, xr) = Q Ko(v|z — zr|) (21)
with
Ko(yle —zrl) = Y exp[im(pr—¢)]
X (yr ) K (yrs)  (22)
wherer. = min{r,rg} and r». = max{r,rr}.
Let the scattered field be defined as
uF)’,sct — U,B _ UIF)',inc' (23)
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Again let » = o describe a circle that completely encloses the
object Ds.;. In the homogeneous domain ro < » < oo outside
the object Dy, this scattered field can then be written as

Krn (’77)
K. (yrs)

(24)
Note further that the denominator at the right-hand side of (24)
is added for convenience to arrive at the situation that, at the
level » = r5, we have

oo

u? e wp) = Y exp(—ime)u*(¢r)

m=—0o<

oo

uB’SCt(afs,a:R): Z exp(—im<p5)uf';“t(<pR).

m=—0o<

(25)

Hence, the coefficients u2-5°* (¢ r) are the Fourier coefficients
of the scattered field data as far as the transform with respect to
the receiver coordinates (in this case, ¢s) is concerned. Using
the inverse Fourier transform, we observe that the quantities
uBs°t(»r) may be obtained from the data«?**(z 5, zg) as

27

1 - sC
uf’;“t(ng) =5 /exp(zmg@s) ub “(rs,vr)des. (26)
0

IV. REMOVAL PROCEDURE

To relate the two states described in the previous section to
each other, we apply the global reciprocity relation of (9) to the
source-freedomain 0 < r < rg S0 that we obtain the relation

2w
/ (uAa,,uB — uBa,,uA) rdy =0, r =Ty 27
0
and substitutein this relation the expressionsfor 4 = 4™ +

wbset and uP = uPine 4 Pt to arrive at the “propagation
invariant”

> (Ua Ul =0 (28)
where
<Un37 Ur]?z > = Uniam Ur]j - Ur]?z a7‘0 Un% (29)
and
Upy = U™ + U™ (30)
U;é’i““ =Q Ln(yro) [Km(fw’s) + Ri,’;“] exp(—imps) (31)
/ . Krn (’VTO) + RSCtInL (’VTO)
UA,sct — A sct m 32
= S R ) + Rt () %
while
U£ — U£7inc + U£75Ct (33)
U™ = QL (yro) Km(yrr)exp(imer) — (34)
Km(’W’o)
UB,sct :uF)',sct . 35
m m (903) Km,(’VTS) ( )
Using the relations
<Km(’77’0), Krn (’770)> =0 (36)
<Irn(77)0)7 Irn (77)0)> =0 (37)

which directly follow from (29), and

(Kim(v70), I (yr0)) = =L (70), Km(770)) = %
(38)

which follows from the Wronskian for modified Bessel func-
tions ([8, form. 9.6.15]), we obtain

G Knl(,yTS) + R;EC . B,sct
> {Q T Kolrs) exp(—imys )y, " (¢r)

U/A’SCt(QOS) Rfﬁt 1

m uB,sct
Krn (’YTR) + Rsﬁt Irn (’YTR) Krn (’YTS) ™

UA7SCt((PS)K (’YTR) }
— m m exi(im o
Q K,,n("}/TR) + Rfﬁt-['rn(,}”R) p( SOR)

(39)

m=—0oc

(or)

We now apply the inverse Fourier transform with re-
spect to <p5,1/27rf027rd<psexp(ik<ps), and subsequently
apply the inverse Fourier transform with respect to
or,1/2m [Z7 dprexp(—ilpg) to al terms of (39). With
the definitions

27
i ! . ) sC
u;::’rnt = % / exp(lkgas)uﬁ{ t(ws)dws (40)
0
27
oe 1 , sC
U’r]i?,l t= % /eXp(—'thR)uflv lt(‘PR)dSOR (41)
0
we arrive at
K)o
oo A,sct psc
+ Z Ukml Rm,t 1 uB,sct
m=—oo Km(’W’R) + Rfﬁt_[n,,(’)/TR) Krn(’YTS) m,l
A,sct
wy Ki(yrr)
— Q 2 s = O7 —co < k < oo
Ki(yrr) + B L (yrR)
(42)

whichis, for each [, an infinite system of equations, from which
u2°" has to be solved. This system of equations is written as

m,l

oo
LTk,l + § Ak,rn, Lm,l = bk,la

—xw<k<oo (43
with the system matrix
1 Ky (vyr
A =+ HQrs) et
QKk(’y7‘5)+Rk [
Rsct
>< m (44)

K (yrs) [Km(yrr) + R L (yrR)]
the known vector

b Kk (77)5) A,sct
kil

Kl(’YTR)
[L . inc uk,l
Kk(’w S) + I

Ki(yrr) + B Li(yrr)
(45)

and the unknown vector

B ,sct
m,l

(46)

Tm,l = U
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The formal solution of (43) is obtained as

o

Trg = Z 7+ A],:jn b1

m=—0o

(47)

where [ is the diagona unit matrix. With this solution, the
scattered field in the open microwave scanner is obtained from
(25), where the coefficients u2°*(¢x) in accordance to (41)
are given by

o

Z exp(ilor) T 1.

l=—0oc

up " (r) = (48)

When we substitute this result into (25), we obtain the scat-
tered field data uw?°*(z s, zg). Using the standard source/re-
ceiver reciprocity, we obtain the desired scattered field data of
the equivalent open microwave scanner as

uB,sct( B,sct(

$R7$s) =Uu 375737}3)

oo

= Z exp(—imps)ul t(pr).

m=—0o<

(49)

The scattered field data for the equivalent open scanner can be
used as input for the inversion algorithms dealing with objects
in a homogeneous embedding of infinite extent.

Weremark that inversion schemesbased on local typeof field
solutions, likefinite elements or finitedifferences, do not benefit
from the present procedure. In order to bound the domain of
computation, there may be a strong preference to operate with
the closed scanner.

In the case that we are dealing with experimental scattered
field data obtained in an open microwave scanner, and one
prefers an equivalent closed scanner so that local type of
field solutions may be applied efficiently, then we need a
preprocessing step to replace the open scanner by an equivalent
closed scanner. This is discussed in Section V.

V. REPLACEMENT OF AN OPEN MICROWAVE SCANNER
BY A CLOSED ONE

We start with the remark that (42) yields the relation between
the open and closed scanners. However, now we envisageit, for
each k, as an infinite system of equations, from which ufjft
has to be solved. This follows immediately by rearranging this
equation as follows:

Ki(yrr)

A,sct
— U, 2
K (,YTR) + RSCtIl(’YTR) k,l
B,sct psc
+ Z m,t R t 1 A,sct
e Em(Y7R) Rf;itfm(’w) Kpn(yrs)
B,sct i
Up 1 [Ki(yrs) + Ryl
+Q =0, —oo <1 < oo,
Ki(yrs)
(50)
This system of equations is written as
Th,l — Z Thoym Am,t = b, —oo<l<oo (51)

m=—0o<

with the system matrix
1 Ryt
Q Ko (7rs) [Km(yrR) + Rig L (7 R)]
B ,sct Kl(’YTR) + R?Ct.[[ (’}/TR)

Arn,l =

52
m,l Kl(,YTR) ( )
the known vector
K . Rinc K . RsctI .
ka _ k(r}qs)—)’_ k u}l:',lsct 1(771_3)_’_ l 1(771“3) (53)
Ky (vrs) : Ki(yrr)
and the unknown vector
LTkm = U/?,S,ft (54)
The formal solution of (51) is obtained as
Trg = Z Do [T — Al (55

m=—0o<

With this solution, the scattered field in the closed microwave
scanner isobtained from (18), where the coefficients ;= (¢s)
in accordance to (40) are given by

oo

“nA{SCt@S): Z exp(ikQOS)xk,rn

k=—oc

(56)

and, consequently, we obtain the scattered field data
w2 g, x5) as[cf. (18)]

oo

Z exp(imer) U5 (ps).

m=—0oc

uA,sct(

a:R,azs) = (57)

The scattered field data for the equivalent closed scanner can
now be used as input for inversion algorithms dealing with the
local type of field solutions.

V1. CONCLUSIONS

In this paper, we have shown that the scattered field data ob-
tained in a closed microwave scanner and the scattered field
data obtained by an equivalent open scanner are related to each
other via Rayleigh’s reciprocity theorem. When the scattered
field data from one type of scanner isknown, the scattered field
datafrom the other type of scanner is obtained by carrying out a
simple processing step, which involves an inversion of asystem
of linear equations. In practice, the number of sources that gen-
erate the fields and the number of receivers that measure the
fields are limited. This means that all the numbers m, [, and k&
have a bounded range. The Fourier inversion integrals have to
be replaced by finite summations as well. The several summa
tions can be carried out efficiently with standard FFT routines.

We finally mention that equivalent problems in acoustics,
elastodynamics, and three-dimensional (3-D) electromagnetic
may be analyzed in asimilar way using Rayleigh’s reciprocity
theorem for acoustic waves, Betti’s reciprocity for elastody-
namics, and Lorentz' reciprocity theorem for electromagnetic
waves, respectively. A fine overview of these reciprocity theo-
rems with a number of applications can be found in De Hoop's
handbook [9].
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